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ABSTRACT: This paper describes the application of in vivo systems
response profiling in CNS drug discovery by a process referred to as the
Integrative Screening Process. The biological response profile, treated as an
array, is used as major outcome for selection of candidate drugs. Dose−
response data, including ex vivo brain monoaminergic biomarkers and
behavioral descriptors, are systematically collected and analyzed by principal
component analysis (PCA) and partial least-squares (PLS) regression,
yielding multivariate characterization across compounds. The approach is
exemplified by assessing a new class of CNS active compounds, the
dopidines, compared to other monoamine modulating compounds including
antipsychotics, antidepressants, and procognitive agents. Dopidines display a distinct phenotypic profile which has prompted
extensive further preclinical and clinical investigations. In summary, in vivo profiles of CNS compounds are mapped, based on
dose response studies in the rat. Applying a systematic and standardized work-flow, a database of in vivo systems response
profiles is compiled, enabling comparisons and classification. This creates a framework for translational mapping, a crucial
component in CNS drug discovery.

KEYWORDS: Neurochemistry, monoamines, rodent behavior, drug discovery, systems pharmacology, phenotypic screening,
multivariate data analysis, dopidines, antipsychotics, response profiles, biomarkers, translational modeling

■ INTRODUCTION

Besides the therapeutic class, CNS active compounds are
typically categorized either based on receptor affinities/
interactions at the presumed target protein, e.g., “SSRIs”
(selective serotonin reuptake inhibitors), or based on the
chemical structure class, e.g., “tricyclic antidepressants”.
Furthermore, the target centered view on CNS active drug
actions dominates how drug discovery processes are
implemented in today’s drug discovery organizations. These
processes are to a large extent built upon high throughput in
vitro screening at the molecular level as the key element.1 It is
assumed that one has identified relevant molecular target(s) for
intervention; and the physicochemical interaction between the
target molecule and the drug molecule as defined by certain in
vitro binding assays, is the prime aspect of interest. Thus, the
ideal properties of a new chemical entity are defined from the
start, i.e., a substance with a high and selective affinity to, and a
prespecified activity at, the selected target.
However, due to limitations in the in vitro characterization,

and to the complexity arising from intracellular and circuitry
level downstream effects, redundancy, and adaptations
occurring in vivo but not in vitro, it can be argued that there
is no straightforward one-to-one relationship between in vitro
and in vivo effects, and hence, in general limited knowledge on

how activities on targets measured in vitro relates to effects in
disease states in vivo.2,3 A recent evaluation by Swinney and
Anthony of the effectiveness of drug discovery strategies
suggests a higher success rate for phenotypic vs conventional
screening with respect to new drug approvals.4 Their detailed
analysis showed that the overall result was actually even more
pronounced for the CNS therapeutic area. It is worth noting
that their analysis is based on the total outcome from both
strategies and no compensation was made for the fact that only
a minute fraction of the total resources was spent on
phenotypic screening.
Furthermore, mathematical modeling of biological regulatory

networks suggests these are inherently resistant to perturba-
tions of single targets/nodes,5 which could be a major factor
underlying the lack of success in finding novel, highly selective,
single target treatments for CNS disorders. Polypharmacology
strategies have been suggested to overcome this.6,7 Indeed, the
average number of targets among approved drugs is 6−8,8,9
which represents a “promiscuity enrichment” of compounds
reaching the market, as compared to the overall pool of
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bioactive compounds from medicinal chemistry sources, with
an average of 1.9 targets/molecule.9 Such an outcome would
not be expected given the presumptions of superior efficacy and
safety with single target compounds, but rather supports a
multitarget approach, or, in some cases, may reflect that the
drug molecule properties providing the beneficial therapeutic
effects in fact arise from “off-target” activities. While it can be
argued that no fundamentally new treatments have yet been
developed, based on a “multitarget” approach, it is clear that
combination of drugs with different modes of action, such as
the use of antipsychotics combined with antidepressants,10 very
often offers important improvements of overall efficacy.
Another example of successful polypharmacology in the CNS
area is the novel analgesic compound tapentadol, combining
two distinct action mechanisms resulting in adequate efficacy
with reduced side effect compared to “pure” opioids.11

In view of the theoretical as well as factual shortcomings of
strictly target-based drug discovery strategies, and the fact that
the actual mechanisms underlying CNS disorders are to a large
extent not known, it makes sense to explore the utility of
different screening approaches in drug discovery, with focus on
the assessment of drug effects at the system level, i.e., in the
integrated physiological systems. Such assessment has the
obvious advantage that it will reveal any disease related drug
effect regardless if the underlying mechanism is known or not,
providing that the measured response profiles are sufficiently
sensitive to the effect. The structure and functional organization
of physiological systems, i.e., the actual substrate for in vivo
effects, are to a large extent conserved across species. For
instance, the organization of the basal ganglia is conserved
throughout vertebrate phylogeny,12 as is the monoamine
system as a whole.13,14 A useful in vivo screening process
should capture physiologically relevant effects, and enable
multiple head-to-head comparisons of different compounds and
translation to humans. In the following, we describe the
practical application of such an in vivo based approach, with
potential to facilitate translational modeling and improve
prediction of clinical properties of novel candidate drugs.
This paper presents a process for the core pharmacological

evaluation performed in the context of drug discovery of CNS
active compounds which we refer to as the Integrative
Screening Process (ISP). ISP is tailored to optimize the
outcome of the drug discovery process by parallel assessment of
key biological measures, as opposed to sequential filtering as
applied in conventional drug screening programmes.3 ISP
applies CNS systems pharmacology15 in the sense that the in
vivo biological response profile, i.e., the dose dependent effects
on a range of biomarkers, is the major driver in candidate
selection and structure−activity relationship (SAR). Impor-
tantly, the in vivo biomarkers are treated as an array, rather than
focusing on single biomarkers, which enables simultaneous
assessment of many variables (in this case 228−248 measured
variables), captures information residing in correlation patterns,
improves signal-to-noise, enables quality control and outlier
detection, and provides sensitivity and robustness.16,17 This
methodology gives the advantage of taking into account not
only isolated receptor level effects of a compound, but also
interactions that emerge on multiple levels in the biological
system, including, e.g., downstream effects along neuronal
pathways, and synergies with respect to pharmacological effects,
arising from interactions with multiple targets. By systematically
assessing and comparing the response profiles of different
compounds, in a standardized fashion, this can be related to

clinical features, i.e., therapeutic effects and adverse effects,
providing a means for translational modeling and predictions.
Biomarkers include neurochemical indices related to mono-

amines, which are known to be key modulators of essential
CNS functions including voluntary movement, feeding, affect,
reward, sleep, arousal, attention, sensory processing, neuro-
endocrine functions, and cognition.14,18 Monoamine systems
are conserved across mammals;13,14 and monoamines and their
metabolites can be measured with high precision in different
brain areas. Furthermore, descriptors of locomotor activity,
which directly reflects fundamental aspects of motor function
and mental state, are included, as elegantly phrased in a review
by Robbins: “Behaviour is of course the main output and
function of the brain. It stands to reason that any study of the
brain that leaves out behavioural measurement is likely to be
incomplete.”19 An application of phenotypic characterization
for CNS drug discovery based only on behavioral analysis was
recently published,20 and the usefulness of multivariate
behavioral assessment to study drug effects is described, e.g.,
by Geyer and Paulus,21 but no attempts to combine both
neurochemistry and behavior have, to our knowledge, been
made before.
In the present study, data on a wide variety of known

therapeutic agents including antipsychotics, antidepressants,
anxiolytics, and psychostimulants as well as investigational and
tool compounds, are collected, and then used to define a
multidimensional compound “map” serving as a guide toward
the sought after in vivo profile. Applying these principles, we
have compiled an extensive database on standardized
phenotypic response profiles on psychotropic compounds,
which can be exploited in different areas of CNS pharmacology
and drug discovery. To date, the database covers more than 350
CNS active reference compounds, including >100 compounds
in clinical use in therapeutic areas such as schizophrenia,
affective disorders, neurodegenerative disorders, epilepsy, and
ADHD.
This method was instrumental in the discovery of dopidines,

a novel class of compounds with certain modulatory effects on
dopamine transmission that leads to “psychomotor stabiliza-
tion”, i.e., the ability to suppress motor activity in states of
hyperactivity, and enhance motor activity in hypoactive
states.22−26 This class of compounds was discovered in an
effort to find novel treatments for psychiatric and neurological
disorders, taking into account the vital impact of central
monoaminergic and specifically dopaminergic pathways in the
cortico-subcortical circuitry regulating psychomotor functions,
and the convergence of different pathophysiological mecha-
nisms in, e.g., psychiatric and movement disorders toward
frontal-cortical functions.27 In short, the target preclinical
profile was as follows: (1) No interference with spontaneous
locomotor patterns over a wide dose range; (2) normalization
of states of hypoactivity; (3) normalization of states of
hyperactivity; and (4) effects primarily through the dopamine
system. The objective was to find new drugs providing superior
efficacy, but avoiding the troublesome side effects hampering
the use of available monoamine modulating drugs, especially
the motor depressant effects of antipsychotics, believed to arise
from excessive dopamine blockade.28,29 In this paper, we aim to
describe in more detail the phenotypic response profiling used,
and demonstrate multivariate maps, including classification of
compounds assessed and tentative interpretations in terms of
clinical properties as well as receptor level mechanisms
underlying the in vivo profiles. Comparator compounds were
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selected to span a variety of pharmacological profiles and
therapeutic classes, representing typical and atypical anti-
psychotics, antidepressants, procognitive agents, and psychos-
timulants. In addition to the dopidines, data on a further set of
compounds discovered by the phenotypic screening principles
outlined herein are included: IRL547, IRL790 (psychomotor
stabilizers), IRL626, IRL678 (fast-off DA D2 antagonists),30,31

IRL667,32 IRL696,33 IRL744, and IRL752 (referred to as
cortical enhancers).34

■ RESULTS AND DISCUSSION

We have applied partial least-squares (PLS) regression analysis
of systematically collected phenotypic in vivo response data, to
obtain variable weight plots which serve as maps representing
the overall pattern of effects of a wide range of psychotropic
compounds. This is demonstrated by two different models: one
more broad-ranging in terms of compound classes included and
response variables and a second, more narrow, restricted to
compounds primarily modulating dopamine transmission. The

Table 1. Overview of PLS Model on Neurochemical and Behavioural Dose Response Data on 67 Compoundsa

component R2X R2X (cum) eigenvalue R2Y R2Y (cum) Q2 Q2 (cum) significance iterations

1 0.200 0.2 49.7 0.012 0.012 0.0116 0.012 R1 14
2 0.114 0.315 28.4 0.009 0.022 0.0084 0.020 R1 18
3 0.073 0.388 18.2 0.008 0.030 0.0057 0.025 R1 70
4 0.065 0.453 16.1 0.007 0.037 0.0050 0.030 R1 200
5 0.059 0.512 14.5 0.008 0.045 0.0065 0.037 R1 23
6 0.040 0.552 9.78 0.007 0.052 0.0050 0.041 R1 36
7 0.039 0.591 9.74 0.005 0.057 0.0024 0.044 R1 62
8 0.046 0.637 11.4 0.003 0.060 0.0005 0.044 R1 72

aR2X: Fraction of variance in X block explained by each component, and cumulative (R2Xcum). R2Y: Fraction of variance in Y block explained by
each component, and cumulative (R2Ycum). Q2 denotes the overall cross-validated R2 for each component, and cumulative (Q2cum). All
components were statistically significant as determined by cross-validation (Q2 > 0, denoted R1).

Figure 1. Variable weights (w*c) from PLS regression model based on dose−response data on neurochemistry and behavior for 67 compounds.
Shown are dependent (Y) variable weights along component 1 and 2 (colored circles), superimposed on vectors representing independent (X)
variable weights for the neurochemical variables, and dots representing the behavioral variable weights. X-Weights are scaled to optimize readability,
applying scaling factor of 1.5 for neurochemistry variables and 5 for behavioral variables. Areas with closely related clusters of variables have been
encircled and shaded to enhance readability. Briefly, the location of each Y variable (compound) represents the overall direction of the dose
dependent effects of that particular compound on the underlying variables, i.e., compounds located close to each other have similar effects. Coloring
represents compound class: Green, in-house compounds; blue, antipsychotics; yellow, antidepressants; purple, DA agonists/PD drugs; gray, DA D1
ligands; pink, abuse; turquoise, procognitive/ADHD.
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analysis is focused on the properties of dopidines, a class of
compound developed by this in vivo phenotyping approach, in
relation to other types of dopamine modulating compounds, in
particular antipsychotics.
The broad-ranging main multicompound PLS model

generated was based on monoaminergic neurochemical indices
and behavioral descriptors on antipsychotics, antidepressants,
procognitive agents, psychostimulants, antiparkinson drugs,
dopidines, and a set of compounds from a new series, referred
to as cortical enhancers.34 A significant eight component model,
describing 64% of the variability in the independent variables
(X) and 8% of the variability in the dependent variables (Y) was
obtained (R2X 0.64, R2Y 0.06, Q2 0.044; model statistics are
shown in Table 1). In the typical use of PLS regression
modeling of a response modeled by a set of independent
variables, a low R2Y would indicate a poor fit to the model. In
this case, the low degree of variability explained in Y is due to
the orthogonal nature of the constructed Y-data, consisting of a
matrix with one column per compound with zeros except for
the rows corresponding to the specific compound (experiment)
where the doses for each animal are coded (see subsection Data
Analysis under Methods for more details). The purpose of the
PLS models presented here is not to obtain a model for
prediction but rather to describe similarities and differences

between dose response data obtained for each compound. The
constructed Y matrix enables a transformation from a data set
of responses for individual animals to a weight map where the
compounds (dose variables) are projected on top of the
response (X) variables in order to summarize and display the
patterns of the dose response profiles for different compound
classes. The overall correlation structure of dependent vs
independent variables is shown in Figures 1 and 2, showing w*c
weights for the first three components, i.e., weights for both X
and Y variables superimposed in the same plot to visualize how
effects on X variables (in vivo biological response profiles)
relate to the orientation of Y variables (compound dose
vectors) in the plot. Compounds are colored according to
pharmacological/therapeutic class; however, to enhance read-
ability, not all compound names in each class are written out in
the graphs. Complete w*c weights for all components extracted
are provided in the Supporting Information Table S1. Since the
Y variables in this case represent increasing doses of the test
compounds analyzed, the Y variable weights c represent the
direction of dose dependent effects, in relation to the effects of
other compounds included in the model. Thus, each dose
response profile is summarized in one c weight vector.
Compounds located close to each other have similar dose
dependent effects on the response profiles. On the whole, this

Figure 2. Component 1 vs 3 variable weights (w*c) from PLS regression model based on dose−response data on neurochemistry and behavior for
67 compounds. Shown are dependent (Y) variable weights (colored circles) along component 1 (horizontal) and 3 (vertical), superimposed on
vectors representing independent (X) variable weights for the neurochemical variables, and dots representing the behavioral variable weights. X-
Weights are scaled to optimize readability, applying scaling factor of 1.5 for neurochemistry variables and 5 for behavioral variables. Areas with closely
related clusters of variables have been encircled and shaded to enhance readability. Briefly, the location of each Y variable (compound) represents the
overall direction of the dose dependent effects of that particular compound on the underlying variables, i.e., compounds located close to each other
have similar effects. Coloring represents compound class: Green, in-house compounds; blue, antipsychotics; yellow, antidepressants; purple, DA
agonists/PD drugs; gray, DA D1 ligands; pink, abuse; turquoise, procognitive/ADHD.
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type of analysis provides a visualization of overall effects,
similarities and differences among the dose dependent effects of
the compounds analyzed. As an example, most antipsychotics
produces dose dependent increases of dopamine metabolites
3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA), combined with reduced locomotor activity. This
pattern of effects shows up as a clustering of these compounds
(blue dots) in the upper left quadrant of Figure 1. The
underlying biological response variables governing this are
oriented in the corresponding direction: The DOPAC and
HVA weight vectors are in the same quadrant, and the overall
“cloud” of locomotor activity variables is located in the opposite
direction along component one, i.e., to the right in the graph,
reflecting that these compounds share a dose dependent
reduction of these measures. Accordingly, the partial agonists
analyzed, aripiprazole and bifeprunox, which lack the increase
in dopamine metabolites, but share the inhibitory effect on
locomotor activity, appear in the lower left quadrant in this
graph (Figure 1, located in an orthogonal direction vs
DOPAC/HVA, i.e., no dose dependent effects on these
measures, but diametrically opposed to locomotor activity
variables due to dose dependent behavioral inhibition). Overall,
the main model reveals an overall clustering of compounds,
which agrees well with the clinical properties of the compounds
(manifested here by the overall therapeutic class assignments)
(Figures 1 and 2). Of note, the antipsychotic quetiapine is
located very close to the antidepressants (Figure 1), and thus
based on this could be expected to show antidepressant like
effects in vivo, which has in fact been corroborated in clinical
studies, resulting in its use for major depressive disorder.35

(The other two blue-coded compounds close to quetiapine in
Figure 2 are experimental compounds, LY354740 and
norclozapine both previously considered as potential anti-
psychotics but now discontinued for that indication.) The
positions (variable weights) are governed by the direction of
effects on the response variables. In particular, behavioral effects
influences the position along the horizontal axis (component 1)
in this model, with inhibitory compounds to the left and
stimulant compounds to the right. Increases in dopamine
metabolites (DOPAC, HVA) pull the neuroleptic compounds
toward the upper left corner (Figure 1), while 5-hydrocyindole-
acetic acid (5-HIAA) increases pull some compounds
(dopidines, other IRL compounds, amisulpride) upward
along component 2 (Figure 1), and 5-HIAA decreases pull
antidepressants downward (components 2 and 3) (Figures 1
and 2, respectively).
As a general characteristic, dopamine D2 antagonists/partial

agonists (blue) and DA D1 antagonists (gray) are located to
the left, while dopamine agonists (D2/mixed, purple; D1, gray)
and stimulants (pink) lie to the right (Figure 1). There is also a
vertical pattern, with D1 agonists shifted upward and
antagonists shifted downward (Figure 1). Antidepressants

occupy an area intersected between antipsychotics and
stimulants, shifted somewhat downward, while the ADHD/
cognitive enhancing compounds (turquoise) are located above
these. A number of compounds developed in-house (green),
including the dopidines, are located either close to the cluster of
ADHD/cognitive enhancers (e.g., IRL752) or just to the right
of the main “antipsychotics” cluster (e.g., pridopidine,
ordopidine, IRL790). Looking at the third component (Figure
2), it appears that this contributes to the separation of
antidepressants vs ADHD/cognitive enhancers, related to, e.g.,
differential effects on 5-HIAA (positive weights on component
3), 3-MT (negative weights), and some of the behavioral
measures (negative weights for activity late in the recording
session, positive weights for activity in the early phase,
reflecting differential effects over time among compounds
separated along component 3).

Features Relating to DA D1/D2 Receptor Activity. In
the first projection shown (Figure 1), which represents the two
first components, accounting for the largest part of the variance
modeled, a pattern strongly relating to dopamine D1 and D2
receptor effects appears to be present. There is a left-upward
axis oriented along D2 antagonist/agonist-like effects, and an
orthogonal, left-downward axis oriented along D1 antagonist/
agonist-like effects (Figure 1). This pattern is of course related
to the inclusion of several antipsychotics with strong D2
antagonist effects such as dose dependent DOPAC and HVA
increases, which have a great impact on the model, however the
presence of an orthogonal direction potentially related to D1
receptor agonist/antagonist-like effects affecting the orientation
of different compound classes included, suggests not only
independent net system level effects of selective D1 vs D2
ligands, but also that unrelated, nondopaminergic compounds
can display similar effects in vivo. Thus, several cognitive
enhancers, including memantine, a NMDA antagonist, and
donepezil, an acetylcholinesterase inhibitor, are located in the
DA D1 agonist direction in this projection (Figure 1), and are
also located close to the D1 agonists in the component 1 vs
component 3 projection (Figure 2). Looking at the underlying
response variables, a tendency toward behavioral activation,
combined with altered tissue amine levels are noted. These
cognitive enhancers have been shown to enhance dopamine
transmission, e.g., in the frontal cortex,36 which could explain
their similarities with DA D1 agonists in a global in vivo assay,
which captures net system level effects rather than specific
receptor protein interactions. A set of in-house compounds,
exemplified by compound IRL752, the main effects of which
are to increase extracellular NA and DA, as well as Arc mRNA
in the frontal cortex,34 also cluster among the cognitive
enhancers (Figure 1). Furthermore, the dopidines are shifted
toward this area, compared to the cluster of classical DA D2
antagonists, which would be consistent with similar effects, i.e.,

Table 2. Overview of PLS Model on Behavioural Dose Response Data on 26 Compoundsa

component R2X R2X (cum) eigenvalue R2Y R2Y (cum) Q2 Q2 (cum) significance iterations

1 0.48 0.48 109 0.031 0.031 0.029 0.029 R1 9
2 0.14 0.61 30.9 0.019 0.050 0.016 0.0446 R1 15
3 0.09 0.70 20.8 0.013 0.063 0.009 0.0533 R1 23
4 0.06 0.76 13.3 0.012 0.076 0.007 0.0596 R1 52

aR2X: Fraction of variance in X block explained by each component, and cumulative (R2Xcum). R2Y: Fraction of variance in Y block explained by
each component, and cumulative (R2Ycum). Q2 denotes the overall cross-validated R2 for each component, and cumulative (Q2cum). All
components were statistically significant as determined by cross-validation (Q2 > 0, denoted R1).

ACS Chemical Neuroscience Research Article

DOI: 10.1021/acschemneuro.6b00371
ACS Chem. Neurosci. 2017, 8, 785−797

789

http://dx.doi.org/10.1021/acschemneuro.6b00371


in the DA D1 agonist like direction, superimposed on the DA
D2 antagonist neurochemical profile of the dopidines.
A second more focused PLS model was generated focusing

on compounds more specifically modulating dopamine trans-
mission as the primary effect, and restricting the analysis to
behavioral measures, to obtain a more detailed analysis of, in
particular, the differences between the behavioral effects of
different types of antipsychotics and dopidines. This model was
based on data on 26 compounds, including antipsychotics,
dopidines, dopamine D1 and D2 agonists and antagonists, and
dopaminergic stimulants. PLS regression yielded a four
component model, capturing 76% of the variability in the X
block, explaining 8% of the variability in Y (Table 2). A w*c
weight plot, showing X and Y variable weights superimposed,
for the first two components, is shown in Figure 3. w*c weights
for all components extracted are provided in Supporting
Information Table S2.
Component 1 (horizontal axis) essentially represents overall

impact on the level of locomotor activity, with compounds
increasing activity to the left and compounds decreasing activity
to the right. Variables capturing time spent in the central part of
the arena are also to a large extent represented by the first
component, indicating that this correlates to overall behavioral
activation among the compounds tested. The second
component (vertical axis) is related to the time-course of the

locomotor effects, with variables capturing early phase
activation in the upper half. Furthermore, some behavioral
pattern variables such as stoppings and time spent in the center
of the arena have significant, negative, weights along
component 2, which contributes to the separation of
compounds depending on their effects on these measures.
Here, the antipsychotics (DA D2 antagonists, blue; partial
agonist, orange) are located in the right half of the graph, due
to general inhibitory effects on locomotor activity among these
compounds; in accordance with the outcome of the previous
PLS model. One notable exception is the benzamides; sulpiride
and amisulpride, located close to the dopidines (bright green),
known to lack inhibitory effects on locomotion in the normal
state.22,23 There is also a set of in-house compounds not
classified as dopidines (dark green); acting as DA D2
antagonists with fast dissociation kinetics31.30 Of note, unlike
the other D2 antagonists assessed, including the compound
JNJ-37822681, which is also reported to be a fast dissociating
D2 antagonist,37 these compounds do not inhibit locomotor
activity. The most profound locomotor inhibitory effects in this
data set are observed for the partial DA agonists (orange),
aripiprazole and bifeprunox, along with the DA D1 antagonist
tested, SDZ219-958 (turquoise), displaying very similar
behavioral effect profiles (located together in the far right end
along component 1). The high affinity D2 antagonist

Figure 3. Variable weights (w*c) from PLS regression model based on dose−response data on behavior for 26 compounds. Shown are dependent
(Y) variable weights along component 1 and 2 (colored circles), superimposed on dots representing variable weights for the independent (X)
variables (308 behavioral descriptors). X-weights are scaled to optimize readability, applying scaling factor of 0.4. Areas with closely related clusters of
variables have been encircled and shaded to enhance readability. Briefly, the location of each Y variable (compound) represents the overall direction
of the dose dependent effects of that particular compound on the underlying variables, i.e., compounds located close to each other have similar
effects. Coloring represents compound class: Bright green, dopidines; dark green, other in-house compounds with fast-off DA D2 receptor
dissociation kinetics; blue, antipsychotics; red, dopamine agonists; turquoise, D1 antagonists; orange, partial DA agonists. LMA: Locomotor activity.
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antipsychotics (blue), except the benzamides, are located in the
lower right quadrant, suggesting relatively more inhibitory
effects during the early recording phase. Clozapine and
quetiapine, antipsychotic compounds with lower D2 affinity,
display less marked effects (smaller weights along component
1) compared to the partial agonists, and less impact on early
phase locomotor activity compared to the group of high affinity
D2 antagonist; however, a similar profile was also observed with
risperidone, an atypical antipsychotic with high affinity at DA
D2 receptors.
Regarding the full agonists and stimulants (red), D-amphet-

amine displayed the most marked stimulatory effect on
behavior (Figure 3, large negative c weight along component
1). The D1 and mixed D1/D2 agonists are clustered in the
direction of sinuosity, stoppings, and time in the center of the
arena, while this is less evident for the D2 selective agonists
pergolide and pramipexole. Furthermore, the D2 selective
agonists displayed less overall behavioral activation compared
to the other stimulant compounds. Finally, the dopidines
(bright green) and a predecessor compound, (−)-OSU6162,38
are clustered in an area rather close to the origin, oriented
somewhat to the left in the graph, essentially in the direction of
early phase activity, indicating no behavioral inhibition, but
possibly some slight activation, however with a pattern distinct
from the stimulants which are located in an almost orthogonal
direction.
This second more focused behavioral model provides a

demonstration of “zooming” in the multivariate map, by
focusing on one domain of biological descriptors, and
restricting the set of test compounds (Figure 3). In this case
we used primarily dopamine modulating compounds, selected
to cover D1 and D2 selective ligands as well as dopidines and
antipsychotics representing both typical and atypical ones.
Among the direct and indirect agonists (red), all displayed clear
behavioral activation, with qualitative features including
increased sinuosity, stoppings, and activity in the center of
the arena distinguishing D-amphetamine, D1 selective agonists
and the mixed D1/D2 agonist apomorphine from D2 selective
compounds (pramipexole, pergolide). Not surprisingly, D-
amphetamine induces the most impressive behavioral increase,
reflected by the large negative weights along component 1 (left-
most position on the horizontal axis). Conversely, the
dopamine antagonists in most cases decreased locomotor
activity, albeit with qualitative and quantitative differences
among the compounds tested. High affinity D2 antagonists
such as haloperidol, raclopride and JNJ-37822681, as well as
olanzapine, are clustered in the lower right corner reflecting
overall inhibitory effects especially in the early phase of the
recording session. The D1 selective antagonist SCH23390
(turquoise), as well as the partial agonists aripiprazole and
bifeprunox, exert a qualitatively different behavioral inhibition,
mainly affecting late phases. An intermediate profile was
observed with clozapine, quetiapine, and risperidone, displaying
less profound inhibition, albeit qualitative more similar to the
partial agonists than to the high affinity D2 antagonists, as
revealed by the orientation of these compounds essentially
along component 1. Compared to the main model, this analysis
enables a clearer distinction between the specific behavioral
profiles of different compounds, for instance it demonstrates
that the partial agonists differ from other antipsychotics not
only due their relative lack of neurochemical effects, but also in
terms of behavioral qualities. It also helps distinguishing
dopidines and other dopamine modulatory compounds which

have DA D2 antagonist properties in vitro and with respect to
neurochemistry, but are clearly different from both classical D2
antagonists and partial agonists with respect to their behavioral
effects, which rather display some resemblance to the dopamine
agonists. It was recently shown that dopidines, as opposed to
classical D2 antagonists as well as partial agonists and atypical
antipsychotics, increase Arc mRNA, a marker of synaptic
activation,39 in the frontal cortex; an effect which may be of
relevance to the specific, state-dependent, behavioral effects of
the dopidines.22

Antipsychotics. The antipsychotic compounds occupy a
wide area in the main model (Figures 1 and 2), reflecting
considerable differences with respect to behavioral activity,
which is inhibited by several but not all of these compounds,
and neurochemical indices, especially dopamine metabolites
(DOPAC, HVA) and serotonin metabolites (5-HIAA). Some
degree of correspondence between major in vitro binding
properties and in vivo response profiles can be discerned. As
discussed above, D2 antagonists tend to cluster in the upper
right corner (main model, Figure 1). Aripiprazole and
bifeprunox, described as partial D2 agonists, have a distinct
position toward the lower right corner (Figure 1), reflecting a
combination of behavioral inhibition and absence of increases
in DOPAC and HVA displayed by these compounds.
Furthermore, this location represents a similarity with DA D1
receptor antagonists, also evident by their position in the
opposite direction vs the D1 agonists. Possibly, partial agonism
at D2 receptors creates a net effect resembling that of DA D1
antagonists, although neither aripiprazole nor bifeprunox acts as
D1 antagonists in vitro. To ensure that this phenomenon did
not arise due to excessive doses of the partial agonists, leading
to unspecific behavioral inhibition, we checked the behavioral
effects in the lowest doses tested, also in replicate experiments,
and found that the behavioral inhibition, e.g., by aripiprazole
appears in the same dose range as has been reported to increase
DA efflux.40 Tentatively, one explanation of the “D1-antagonist-
mimicking” effect could be functional selectivity vs DA receptor
signaling pathways.41 The main point in this context is that the
model picks up this effect very efficiently applying the
multivariate profiling approach.

Impact of DA D2 Receptor Dissociation Kinetics. Apart
from partial agonism, fast receptor dissociation kinetics has
been put forward as a key property that distinguishes atypical
from typical D2 receptor antagonists especially with respect to
EPS liability which has been attributed to excessive D2 receptor
blockade.42 Among the compounds tested here, the anti-
psychotics quetiapine, clozapine, and JNJ-37822681, as well as
the dopidines, and the in-house compounds IRL626 and
IRL678 are reported to display fast-off D2 antagonism.30,37,42,43

However, these “fast-dissociating” D2 antagonists span most of
the antipsychotics area. In Figure 1, JNJ-37822681 (koff = 0.11
s−1)37 is located among the left-most of the antipsychotic
compounds, e.g, haloperidol, a high-affinity antagonist not
classified as fast dissociating (koff = 0.01 s−1),37 while quetiapine
sits close to the origin, i.e., in the extreme right border of the
antipsychotics, and clozapine (koff = 0.05 s−1)37 is located in
between. The dopidines and IRL denominated compounds
displaying fast-off D2 receptor dissociation kinetics are located
upward, relative to these compounds (koff not calculated; fast
dissociation judged by fast and complete recovery of DA
responses after wash-out30). In the model based on behavior
only (Figure 3), again, clozapine takes an intermediate position
between the more inhibitory compound JNJ-37822681, and
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quetiapine, whereas the dopidines and IRL D2 modulators have
a location above these, close to the benzamides sulpiride and
amisulpride. Hence, fast-off dissociation as such is not
associated with any specific overall profile (Figures 1 and 2)
or behavioral profile (Figure 3). Some discrepancies with
respect to the in vitro binding have been pointed out for, e.g.,
JNJ-37822681, which was reported to display lack of
reversibility in terms of functional dopamine responses43

measured on whole cells, as opposed to the rapid dissociation
rate reported using purified membranes.37 The functional
recovery study concluded that there is no clear association
between rapid recovery rates and atypicality. However, it is
worth noting that the compounds displaying complete recovery
of functional dopamine responses, i.e., sulpiride, remoxipride,
pridopidine, and (−)-OSU6162, all are located in the “non-
inhibitory” cluster in the upper, left area of Figure 3, suggesting
some correspondence between the in vitro finding and
behavioral effects in vivo. On the other hand, risperidone, a
high affinity D2 antagonist, with koff = 0.004 s−1,37 and lacking
functional recovery of dopamine responses,43 displays limited
behavioral inhibition, as reflected by its position in the central
region of Figure 3, and is clearly offset from the other high
affinity D2 antagonists with strong behavioral inhibition such as
haloperidol or JNJ-37822681.
Clinical Profile of Antipsychotics. Considering the

clinical profile of the different antipsychotics assessed, we
have used the results from recent meta-analyses44,45 comparing
currently used antipsychotics with respect to overall efficacy in
the treatment of schizophrenia, as well as side effect liability to
guide our interpretations of the present findings. These
analyses concluded that clozapine and amisulpride stand out
as the most efficacious antipsychotic drugs, followed by
olanzapine. This corresponds to a broad, intermediate region
in the main model (Figure 1), overlapping the dopidines, but
not extending to the left-most region where the strong DA D2
antagonist compounds (haloperidol, raclopride) are found. On
the other hand, the meta-analyses suggest chlorpromazine,
lurasidone, and ziprazidone to be among the least efficacious
compounds, and these are located further down in the main
model, chlorpromazine and ziprazidone to the left due to
behavioral inhibition, lurasidone more toward the middle
(Figure 1). In the behavioral model, the most effective
compounds, clozapine and amisulpride, appear in an inter-
mediate region, covering compounds with behavioral effects
ranging from very subtle, stimulant to locomotor inhibition,
albeit not overlapping the most inhibitory compounds (Figure
3). On the whole, antipsychotics display a highly variable
degree of behavioral inhibition, which does not correlate with
overall antipsychotic efficacy, although it is noteworthy that the
most efficacious compounds are found among the ones with
limited behavioral inhibition.
EPS liability has been attributed to high-affinity dopamine

D2 antagonism, and further, hypothesized to be influenced by
several factors such as serotonergic components of anti-
psychotic drug effects,46 as well as the receptor dissociation
kinetics and degree of intrinsic activity, e.g., at DA D2
receptors.29 However, second and third generation antipsy-
chotic drugs developed based on these ideas are still considered
to induce EPS.47 The meta-analyses considered herein as a
guide on overall clinical properties indicates clozapine to be
relatively free of EPS. Older compounds such as haloperidol
and risperidone, as well as chlorpromazine, have the most clear-

cut EPS liability, whereas newer compounds appear to carry an
intermediate risk.
Looking at the main model (Figure 1), the compounds with

high EPS liability tend to be located to the left, driven by more
pronounced increases in dopamine metabolites, as compared to
the low liability compounds. The behavioral effect profile, at
least as captured in the two first components of our behavioral
model, does not appear to discriminate between high and low
EPS liability compounds (Figure 3). However, the ranking of
different compounds with respect to EPS liability is not clear-
cut, and some studies indicate no major differences, e.g.,
between first and second generation antipsychotics.47,48

Furthermore, EPS is also observed in drug-naiv̈e schizophrenic
subjects.49

As to the sedative properties of current antipsychotics, the
situation is less equivocal. Most antipsychotics, including
clozapine, olanzapine, and quetiapine as well as typical
antipsychotics are clearly prone to induce sedation, with the
notable exception of amisulpride and aripiprazole, which appear
to carry a very low risk for this side effect.44 Second generation
antipsychotics, in particular quetiapine, are frequently used to
treat insomnia.50 In the overall model, the compounds typically
associated with sedation, including clozapine, chlorpromazine,
and quetiapine, are found in the intermediate region, separated
from both amisulpride and aripiprazole (Figure 1). Concerning
amisulpride, the lack of behavioral inhibitory properties appears
to be a key feature translating to lack of sedation in humans.
Accordingly, the other benzamides with a similar profile,
sulpiride and remoxipride, are also considered to be relatively
nonsedative.51,52

In summary, it appears that the most efficacious
antipsychotic compounds can be picked from a wide,
intermediate area (Figure 1), and, importantly, that this does
not overlap with the area occupied with strong DA D2 blockers
associated with EPS liability, and has limited overlap with areas
covering sedative compounds, among this set of compounds
which must all be regarded as monoamine modulators. Thus,
based on this, it should be possible to find compounds with the
desirable combination of optimal antipsychotic efficacy and
minimal EPS liability and sedative properties, by designing
compounds with an overall in vivo profile suggesting similarities
with antipsychotic compounds, including some degree of DA
D2 antagonism as reflected by the neurochemical indices, but
avoiding the areas in the main model associated with EPS
liability or sedation, and avoiding the behavioral inhibitory
regions.

Dopidines. The dopidines, as well as novel compounds
including IRL790 and IRL626, were developed with such a
profile in mind. In the main model (Figures 1 and 2), they are
located adjacent to the main “antipsychotic” cluster, offset from
the strong D2 antagonists, as well as from the more sedative
compounds such as clozapine and quetiapine, reflecting
moderate effects on dopamine metabolites, combined with
slight increases of serotonergic indices and a tendency to subtle
behavioral stimulation. Due to the latter, along with some
shared effects on cortical amines, the dopidines also cluster
close to cognitive enhancers. The behavioral effects provide a
clear distinction vs conventional dopamine D2 antagonists, as
well as most of the atypical antipsychotics, which are markedly
inhibitory. One notable exception to the latter are the
benzamides, in particular amisulpride, which do resemble the
dopidines in the models shown here, although the dopidines
consistently display more pronounced neurochemical effects.
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Based on mapping as presented here, antipsychotic, and
potentially procognitive properties, without adverse motor
effects, were anticipated for the dopidines, as subsequently
corroborated by extensive preclinical and clinical stud-
ies.22−25,53−59

In Vivo Systems Response Profiling. In general, this type
of systems response map provides a basis for quantitative,
systematic translational mapping across species and models.
With traditional preclinical in vivo models, including specific
behavioral assays, a predefined readout is typically postulated to
correspond to a certain therapeutic effect, an approach that to a
large extent has resulted in disappointment and hence the
notion that in vivo models are unreliable and not predictive.60

The approach presented here utilizes the full spectrum of read-
outs available from the in vivo experiments, rather than single
end-points, and the array of phenotypic descriptors obtained
can be fed into proper quantitative activity−activity relationship
(QAAR) models, governed by functional data rather than by
mechanistic hypotheses. In terms of conventional drug
discovery workflow, it integrates the steps of lead discovery,
lead optimization, and candidate selection, and may also cover
one or both of the preceding steps, target identification and
validation, although it is equally applicable in drug discovery
projects with predefined, molecular targets. The PLS models
can be regarded as a means of data compression, yielding
readouts that can be directly correlated to, e.g., data on clinical
properties, or to in vitro data, or molecular descriptors for
QSAR work. The present study is restricted to neurochemical
and behavioral data from acute experiments, but can be readily
combined with, e.g., data collected from disease models,
transgenic animals, chronic treatment setups, etc. This could be
a way to address the problem of genetic heterogeneity, and
heterogeneity regarding underlying pathophysiological mecha-
nisms, which is likely present for many CNS disorders, such as
depression and schizophrenia, and hampers the applicability of
experimental disease models. The neurochemical analytes,
albeit closely linked to monoamine neurotransmission, are
not primarily viewed as direct measures of, e.g., transmitter
release or specific synaptic events, but display response patterns
that discriminate different states and drug effects across
compound classes. For instance, specific response patterns of
dopamine and its metabolites are well established for dopamine
antagonists and agonists.61 Another example is the character-
istic pattern of changes in monoaminergic indices induced by
the NMDA antagonist MK-801.62

The general principle of considering arrays of biomarkers
rather than single end-points from in vivo assays, to improve
differentiation and understanding of effects of antipsychotics
and psychostimulants, are exemplified in a recent report on
transcriptome fingerprints of intermediate early genes.63

Another study applied proteomic analysis upon chronic
administration to compare the system level effects of the
antipsychotics clozapine, as compared to risperidone, suggest-
ing, i.e., unique effects of clozapine on proteins involved in
calcium homeostasis.64 Such proteomic and transcriptomic
response profiles could be integrated with neurochemical and
behavioral data to help elucidating action mechanisms of CNS
drugs, and improve predictivity in the drug discovery process.
It should be noted that the multivariate analysis approach

applied, i.e., PLS regression on dose response data, is suited to
pick up the main direction of the dose dependent effects. Thus,
if biphasic effects are present, selection of a dose range with
monophasic effects improves the sensitivity. Furthermore, the

outcome is governed by the test compounds included, and thus,
it is a relational map rather than a “GPS”, which gives the
possibility of very specific comparisons, but with the potential
disadvantage that the coordinates of a specific compound
change depending on which other compounds are analyzed in
the same model. If a static map is desired, alternative analytical
approaches can be applied, e.g., based on principal component
analysis of data on a set of reference compounds selected to
span the map.65 New compounds can then be introduced in the
same model, without affecting the original weights. As a general
caveat, with respect to translational modeling, while it is
appealing to be able to capture complex net effects in a relevant,
physiological system, issues such as the presence or absence of
species specific pharmacologically active metabolites, or
otherwise differential PK properties, should be kept in mind.
Limited or delayed CNS exposure can influence the outcome,
even though the setup is tailored to pick up directions as well as
amplitudes of dose dependent effects. In this case, all
compounds tested do show robust CNS effects, in terms of
either neurochemical or behavioral changes. An interesting
extension of the present work could be to create models linking
exposures and responses; however the compounds assessed
herein have complex, and not fully understood action
mechanisms, which limits the applicability of highly mechanistic
PK/PD models. On the other hand, extending with exposure
data would help elucidating different mechanisms.

■ CONCLUSIONS
We describe the application of systematic in vivo systems
response profiling/phenotypic screening in the context of drug
discovery as well as general pharmacological studies. Use of in
vivo assays reduces the risk of missing relevant effects occurring
due to e.g. downstream effects and interactions relating to the
primary molecular target(s). Collection of large arrays of
biological descriptors, rather than single end-points, improves
sensitivity and resolution. The systematic, standardized work-
flow enables comparisons and classification, and creates a
framework for translational mapping as well as QSAR
modeling. The approach is exemplified by the analysis of
dopidines, a new class of dopamine modulating compounds,
compared to other classes of monoamine modulating
compounds including antipsychotics, antidepressants, and
psychostimulants, showing that the dopidines display a distinct
phenotypic profile, suggestive of antipsychotic and possibly
pro-cognitive effects, without motor inhibition in the normal
state. This attractive and useful profile for treatment of several
CNS disorders would not be possible to discover by traditional,
mainly in vitro, target based screening.
Of note, this could be readily deduced based on data from

intact rats, i.e., no specific disease models were used. The
profile has prompted the investigation of dopidines in various
more specific behavioral models, as well as in clinical
studies.22−25,53,55,59,66 Other phenotypically distinct classes
indicated by the present analysis include cortical enhancers
(e.g., IRL752) and a group of behaviorally stabilizing dopamine
D2 receptor modulators not classified as dopidines (e.g.,
IRL790). In this study, standard, linear chemometric methods,
PLS and PCA, are applied, focusing on multivariate dose
response analysis; however, alternative techniques such as
hierarchical analyses and machine-learning methods could be
used, as well as more complex models linking in vitro (in vivo)
and clinical data.67 One important advantage of the linear
chemometrics methods used here is their abilitity to provide
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interpretations and understanding of the reasons for the
patterns and clustering obtained in the models in terms of the
underlying variables. Furthermore, the profiling and, con-
sequently, the translational mapping and predictions of clinical
properties of novel compounds could be improved by
extending the array of biological markers and collecting
response profiles also in disease states, as well as incorporating
exposure data.

■ METHODS
In Vivo Dose Response Analysis. Animals. Male Sprague−

Dawley rats from B&K Scanbur (Sollentuna, Sweden), Charles River
(Köln, Germany), or Taconic (Ejby, Denmark) were used. Rats
weighed 160−180 g at the time of arrival. Rats weighed 220−260 g at
the time of the locomotor and tissue neurochemistry studies. Animals
were housed five animals per cage with lights on between 06:00 and
18:00, at 22 °C, with free access to food and water. All experiments
were carried out in accordance with Swedish animal protection
legislation and with the approval of the local Animal Ethics Committee
in Gothenburg.
Drugs. The animals in the experiments were allocated into one of

five treatment groups, n = 4, according to a latin square design to
reduce the risk of effects of home cage. The treatment groups
consisted of Vehicle (0.9% w/v NaCl or Glucose 5.5% w/v) and the
compound tested at four doses, except in five cases were three doses
where given, using five animals per group (see Supporting Information
Table S3). Compounds were dissolved in physiological saline (0.9%
w/v NaCl) or a few drops of concentrated HAc and 5.5% glucose and
injected subcutaneously in a volume of 5 mL/kg 4 min before start of
locomotor activity recording. Test compounds used in the analyses
presented herein were as follows: lurasidone, cocaine, ephedrine, D-
amphetamine, MDMA, desipramine, DOV21947, maprotiline, fluox-
etine, venlafaxine, bupropion, citalopram, clomipramine, fluvoxamine,
imipramine, mianserine, mirtazapine, reboxetine, sertraline, zimelidine,
amitriptyline, tianeptine, aripiprazole, fluphenazine, iloperidone, n-
desmetylclozapine, ziprasidone, bifeprunox, clozapine, quetiapine,
remoxipride, risperidone, amisulpride, chlorpromazine, olanzapine,
sulpiride, LY354740 (eglumegad), haloperidol, JNJ-37822681, raclopr-
ide, methylphenidate, atomoxetine, guanfacine, tacrine, galantamine,
memantine, donepezil, (−)-OSU6162, pridopidine, ordopidine,
seridopidine, IRL547, IRL667, IRL678, IRL696, IRL744, IRL626,
IRL752, IRL790, A77636, SCH23390, SDZ219-958 (SDZ PSD
95868), dihydrexidine, pergolide, biperiden, apomorphine, and
pramipexole. (−)-OSU6162, pridopidine, ordopidine, seridopidine,
and all IRL-compounds were synthesized in-house, and the other test
compounds where obtained from commercial suppliers. IRL
compounds were at least 98% pure as determined by LC-MS.
Purchased compounds were of ≥98% purity as certified by the
supplier. Synthesis methods for new IRL compounds are described in
refs 32 (example 36, IRL667), 33 (example 1, IRL696), 34 (example 1,
IRL 744, example 5, IRL752), and 31 (example 1, IRL790). The dose
range was carefully selected, based on published data and prior
experience on in-house compound series, to be pharmacologically
relevant, i.e., to capture typical behavioral and neurochemical effects
for each compound class. Doses are provided in the Supporting
Information in Table S3. For the compounds studied herein, the
effects persist for more than 1 h and tmax in terms of efficacy occurs
within the 60 min postdose assessment period.
Locomotor Activity. Locomotor activity was recorded for 60 min in

55 × 55 cm2 sound and light attenuating motility meter boxes, with a
maneuvering space of 41 × 41 cm2 (Digiscan activity monitor
RZYCCM (16) TAO, Omnitech Electronics), generating a time series
of x, y (horizontal activity) and z (vertical activity) coordinates
sampled at 25 Hz. This time series was subsequently converted into a
locomotor pattern by calculating 11 main variables based on the time
series. Each main variable was calculated at seven sampling frequencies
from 25 to 0.25 Hz and pooled into 15 min periods, generating a
locomotor pattern matrix of each animal consisting of 308 variables.

Variables. Ve: Vertical activity, number of time points where the z-
coordinate does not equal zero. Di: Distance traveled. Me: Meander,
sum of all angle differences between adjacent position vectors (without
sign). Mem: Meander divided by distance. Vem: Vertical activity
divided by distance. Mo: Activity fraction, time in motion divided by
time (hence a value between one and zero). St: Stops/starts, number
of the times the velocity changes from zero to non-zero. Note that a
stop is defined in such a way that (in the highest sampling frequency)
a stop of 1/25 s counts as one stop and a stop of 5 s counts as one stop
as well. Stm: Stops in the middle zone, i.e., more than 5 cm from the
wall of the recording box. Mi: Fraction of time spent in “middle zone”,
more than 5 cm from the wall of the box. A value between one and
zero. Moving rats never display zero values, and low values are
displayed by rats resting in the corner. Vel: Average velocity, gives the
same information as the distance variable. Acc: Average acceleration
without sign.

The use of several sampling frequencies were based on the
observation that this captures information related to qualitative
behavioral features (unpublished data). This observation was made
in the process of setting up the behavioral analyses, when data were
analyzed in order to select the optimal sampling frequency. For
example, it was noted that rats treated with two different
psychotomimetic compounds, either MK-801 or D-amphetamine,
yielding a similar overall degree of locomotor stimulation, could still be
distinguished based on the distance traveled variable only, if several
sampling frequencies were used. This strongly indicated that it was
useful to keep the variables calculated at several sampling frequencies,
to maximize the information captured from the behavioral recordings.

In the subsequent multicompound analyses, the following variables
were excluded due to redundancy: Mem, Vel, and Vem calculated at
the reduced sampling frequencies.

Postmortem Neurochemical Analysis. Immediately after the
behavioral activity recording sessions, animals were decapitated and
brains were dissected into striatum, cortex, and limbic region
(containing the nucleus accumbens, both core and shell, most parts
of the olfactory tubercle and ventral pallidum). Tissue samples were
immediately frozen and stored at −80 °C until they were
homogenized with perchloric acid (PCA) (0.1M), ethylenediaminete-
traacetic acid (EDTA) (5.37 mM), glutathione (GSH) (0.65 mM),
and α-methyldopamine (0.25 μM) as internal standard. A digital
sonifier (Branson Digital Sonifier 250-D) was used to homogenize
tissue from the striatum and limbic region. Cortex tissue was
homogenized using an Ultra Turrax T25 homogenizer. All samples
were centrifuged at 10 000 rpm for 10 min at +4 °C. Cortex tissue was
filtered in Munktell filter paper 5.5 cm quality 1F. Tissue eluates were
analyzed with respect to tissue concentrations (ng/g tissue) of the
monoamine transmitter substances (norepinephrine (NA), dopamine
(DA), 5-hydroxytryptamine (5-HT)) as well as their amine
metabolites (normetanephrine (NM), 3-methoxytyramine (3-MT))
and acid metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), 5-
hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA)) by
HPLC separations and electrochemical detection (HPLC/EC). Stock
standards (DA, NA, 5-HT, 3-MT, DOPAC, HVA, HIAA, 500 μg/mL)
and internal standard (AMDA 500 μg/mL) are prepared once every 3
months. 5-HT and 5HIAA are dissolved in Milli-Q water. DA, NA,
DOPAC, NM, 3-MT, and HVA are dissolved in 0.01 M HCl. 5-HT, 5-
HIAA, NM, and HVA are kept in a fridge; DA, DOPAC, NA, and 3-
MT are kept in a freezer. Standard solution for analyses containing
standards diluted in homogenizing solution to a concentration of 0.05
μg/mL is prepared daily. The HPLC/EC method is based on two
chromatographic separations dedicated for amines or acids. Two
chromatographic systems share a common auto injector with a 10-port
valve and two sample loops for simultaneous injection on the two
systems. Both systems are equipped with a reverse phase column
(Luna C18(2), dp 3 μm, 50 × 2 mm i.d., Phenomenex), and
electrochemical detection is accomplished at two potentials on glassy
carbon electrodes (MF-1000, Bioanalytical Systems, Inc.). Via a T-
connection, the column effluent is passed to the detection cell or to
waste. This is accomplished by two solenoid valves, which block either
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the waste or the detector outlet. By not letting the chromatographic
front reach the detector, better detection conditions are achieved.
The aqueous mobile phase (0.4 mL/min) for the acid system

contains citric acid monohydrate 14 mM, sodium citrate 10 mM,
MeOH 15% (w/w), and EDTA 0.1 mM. Detection potentials relative
to Ag/AgCl reference are 0.45 and 0.60 V. The aqueous ion pairing
mobile phase (0.5 mL/min) for the amine system contains citric acid 5
mM, sodium citrate 10 mM, MeOH 9% (w/w), MeCN 10.5% (w/w),
decane-1-sulfonic acid 0.45 mM, and EDTA 0.1 mM. Detection
potentials relative to Ag/AgCl reference are 0.45 and 0.65 V.
Data Compilation and Quality Control. Data quality is monitored

in a semiautomated system. First, an automatic software filtering is
applied to check for data consistency in format and magnitude.
Second, the 308 locomotor variables are automatically calculated from
the 25 Hz data generating LMA patterns for each individual. MVA
monitoring of quality is performed by manually evaluating the control
animals in each new experiment in relation to historical controls (n >
5000) in a number of automatically generated multivariate models,
created by principal component analysis (PCA) on the behavioral
variables, subject to zero mean/unit variance scaling. Similar PCAs are
also calculated based on the neurochemical variables. In addition, the
data for each dose response experiment is subject to separate PCAs.
Outlier animals are manually marked as “weak” or “severe” as well as
the whole experiment (“good”/“no good”). This facilitates the analysis
of impact of outliers on overall results in subsequent data analysis,
when several dose response experiments are analyzed simultaneously.
In some cases, a whole experiment can be considered to be of poor
quality, e.g., due to aberrations in the control group. Data from such
experiments are not used in the creation of multicompound data
matrixes and subsequent analyses.
Data Analysis. The dose response data were analyzed by partial

least-squares (PLS) regression,16 applied to data matrixes organized
with data from individual rats in rows, and variables denoting
treatment and responses in columns. Treatment was represented by
one variable for each compound, with the dose given as a dummy
variable, i.e., 1, 2, 3, or 4 representing ascending doses. This means that
a dependent variable block consisting of n variables was generated for
an analysis of n different compounds. In one model covering 67
compounds, behavioral and neurochemical response data were
combined, yielding an independent variable block of 248 variables.
In a separate model of a smaller set of compounds created to
specifically study compounds primarily affecting dopamine trans-
mission, only behavioral response variables were included. Thus, the
data matrix analyzed had 26 dependent and 228 independent variables.
All independent variables were normalized to vehicle control group
mean, and subject to zero mean and unit variance scaling, i.e., centered
to zero mean and scaled to unit variance, and to log transform. In
models combining neurochemical and behavioral data, block-scaling
was applied, giving equal weight to the neurochemistry and behavioral
variable blocks. For each compound, a dose response analysis using
dose as dependent variable and the biological responses as
independent variables was done, by PLS regression. Should a biphasic
response be detected, further analysis can be improved by selecting a
dose range in which the response is monophasic; however, for the
dose response data presented herein, such adjustments were not
needed. Compounds with a significant dose response relationship
established by PLS were included in the subsequent, multicompound
dose response analyses. PLS models with multiple Y variables equaling
the number of test compounds included in data set were then
generated. Statistical significance was established by cross-validation,
leaving one-seventh of the rows/observations out in each round of
cross validation.16 Models were carefully checked with respect to
potential impact of outliers, by examining residuals and object score
plots, and recalculation with outliers excluded to further assess the
stability of the results. All PLS modeling was performed using the
Simca 13.0 software (Umetrics AB). In the results graphs presented
below, neurochemical variables are denoted by abbreviated analyte
(DO = DOPAC; HI = 5-HIAA; HV = HVA; MT = 3-MT; HT = 5-
HT) followed by region (L = limbic region, S = striatum, C = cortex),
i.e., DOL denotes DOPAC in the limbic area, etc.

Auxiliary Data. As an aid in the interpretation of results, published
data on in vitro binding affinities and clinical efficacy and side effect
liability were used.

Receptor Binding Affinities. The data set provided in ref 69,
containing receptor binding affinity data on current antipsychotics
data, was used as major source regarding in vitro binding profiles.

Clinical Effect Profiles. Effects sizes for antipsychotic effect and side
effects were collected from ref 44, providing a comprehensive
metaanalysis based on a total of 212 clinical studies including
statistical estimates of overall efficacy, weight gain liability, sedation,
prolactin increase, extrapyramidal side effects, and QTc prolongation
for the following compounds assessed herein: haloperidol, amisulpride,
clozapine, olanzapine, risperidone, aripiprazole, lurasidone, chlorpro-
mazine, and ziprazidone.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acschemneur-
o.6b00371.

List of the doses used for each test compound and results
from the multivariate analyses including complete w*c
weights for all components extracted (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*Mailing address: Integrative Research Laboratories, A
Wallgrens backe 20, SE-413 46 Gothenburg, Sweden. Phone:
+46 730 757702. E-mail: susanna.waters@irlab.se.

ORCID

Susanna Waters: 0000-0002-8688-880X
Author Contributions
S.W., H.P., J.K., P.S., and N.W.: Wrote manuscript, designed
research, and analyzed data. Y.S.: Wrote manuscript, analyzed
data. T.A.: Wrote manuscript, designed research, performed
research, and analyzed data. E.L.: Designed research, performed
research, and analyzed data. C.S.: Wrote manuscript and
designed research.

Notes
The authors declare the following competing financial
interest(s): Susanna Waters, Peder Svensson, Johan Kullingsjö,
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Markinhuhta carried out the in vivo experiments. Dr. Fredrik
Pettersson, Dr. Jonas Karlsson, and Maria Gullme performed
the synthesis of in-house compounds.

ACS Chemical Neuroscience Research Article

DOI: 10.1021/acschemneuro.6b00371
ACS Chem. Neurosci. 2017, 8, 785−797

795

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acschemneuro.6b00371
http://pubs.acs.org/doi/abs/10.1021/acschemneuro.6b00371
http://pubs.acs.org/doi/suppl/10.1021/acschemneuro.6b00371/suppl_file/cn6b00371_si_001.pdf
mailto:susanna.waters@irlab.se
http://orcid.org/0000-0002-8688-880X
http://dx.doi.org/10.1021/acschemneuro.6b00371


■ REFERENCES
(1) Lee, J. A., and Berg, E. L. (2013) Neoclassic drug discovery: the
case for lead generation using phenotypic and functional approaches. J.
Biomol. Screening 18, 1143−1155.
(2) Maggiora, G. M. (2011) The reductionist paradox: are the laws of
chemistry and physics sufficient for the discovery of new drugs? J.
Comput.-Aided Mol. Des. 25, 699−708.
(3) Sams-Dodd, F. (2005) Target-based drug discovery: is something
wrong? Drug Discovery Today 10, 139−147.
(4) Swinney, D. C., and Anthony, J. (2011) How were new
medicines discovered? Nat. Rev. Drug Discovery 10, 507−519.
(5) Tun, K., Menghini, M., D’Andrea, L., Dhar, P., Tanaka, H., and
Giuliani, A. (2011) Why so few drug targets: a mathematical
explanation? Curr. Comput.-Aided Drug Des. 7, 206−213.
(6) Drews, J. (2006) Case histories, magic bullets and the state of
drug discovery. Nat. Rev. Drug Discovery 5, 635−640.
(7) Boran, A. D., and Iyengar, R. (2010) Systems approaches to
polypharmacology and drug discovery. Curr. Opin. Drug Discovery Dev.
13, 297−309.
(8) Peon, A., Dang, C. C., and Ballester, P. J. (2016) How Reliable
Are Ligand-Centric Methods for Target Fishing? Front. Chem.
(Lausanne, Switz.) 4, 15.
(9) Jasial, S., Hu, Y., and Bajorath, J. (2016) Determining the Degree
of Promiscuity of Extensively Assayed Compounds. PLoS One 11,
e0153873.
(10) Zhou, X., Keitner, G. I., Qin, B., Ravindran, A. V., Bauer, M., Del
Giovane, C., Zhao, J., Liu, Y., Fang, Y., Zhang, Y., and Xie, P. (2015)
Atypical Antipsychotic Augmentation for Treatment-Resistant Depres-
sion: A Systematic Review and Network Meta-Analysis. Int. J.
Neuropsychopharmacol. 18, pyv060.
(11) Schroder, W., Tzschentke, T. M., Terlinden, R., De Vry, J.,
Jahnel, U., Christoph, T., and Tallarida, R. J. (2011) Synergistic
interaction between the two mechanisms of action of tapentadol in
analgesia. J. Pharmacol. Exp. Ther. 337, 312−320.
(12) Grillner, S., and Robertson, B. (2015) The basal ganglia
downstream control of brainstem motor centres-an evolutionarily
conserved strategy. Curr. Opin. Neurobiol. 33C, 47−52.
(13) Yamamoto, K., and Vernier, P. (2011) The evolution of
dopamine systems in chordates. Front. Neuroanat. 5, 21.
(14) Fuxe, K., Dahlstrom, A., Hoistad, M., Marcellino, D., Jansson, A.,
Rivera, A., Diaz-Cabiale, Z., Jacobsen, K., Tinner-Staines, B., Hagman,
B., Leo, G., Staines, W., Guidolin, D., Kehr, J., Genedani, S., Belluardo,
N., and Agnati, L. F. (2007) From the Golgi-Cajal mapping to the
transmitter-based characterization of the neuronal networks leading to
two modes of brain communication: wiring and volume transmission.
Brain Res. Rev. 55, 17−54.
(15) van der Greef, J., and McBurney, R. N. (2005) Innovation:
Rescuing drug discovery: in vivo systems pathology and systems
pharmacology. Nat. Rev. Drug Discovery 4, 961−967.
(16) Jackson, J. E. (1991) A User’s Guide to Principal Components,
John Wiley & Sons, Inc., Hoboken, NJ.
(17) Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J.,
Wikström, C., and Wold, S. (2006) Multi- and Megavariate Data
Analysis, Part 1, Basic Principles and Applications, Umetrics Academy.
(18) Beaulieu, J. M., and Gainetdinov, R. R. (2011) The physiology,
signaling, and pharmacology of dopamine receptors. Pharmacol. Rev.
63, 182−217.
(19) Robbins, T. W. (2012) Animal models of neuropsychiatry
revisited: a personal tribute to Teitelbaum. Behav. Brain Res. 231, 337−
342.
(20) Alexandrov, V., Brunner, D., Hanania, T., and Leahy, E. (2015)
High-throughput analysis of behavior for drug discovery. Eur. J.
Pharmacol. 750, 82−89.
(21) Geyer, M. A., and Paulus, M. P. (1992) Multivariate and
nonlinear approaches to characterizing drug effects on the locomotor
and investigatory behavior of rats. NIDA Res. Monogr. 124, 203−235.
(22) Waters, S., Ponten, H., Edling, M., Svanberg, B., Klamer, D., and
Waters, N. (2014) The dopaminergic stabilizers pridopidine and

ordopidine enhance cortico-striatal Arc gene expression. J. Neural
Transm. 121, 1337−1347.
(23) Ponten, H., Kullingsjo, J., Lagerkvist, S., Martin, P., Pettersson,
F., Sonesson, C., Waters, S., and Waters, N. (2010) In vivo
pharmacology of the dopaminergic stabilizer pridopidine. Eur. J.
Pharmacol. 644, 88−95.
(24) Nilsson, M., Carlsson, A., Markinhuhta, K. R., Sonesson, C.,
Pettersson, F., Gullme, M., and Carlsson, M. L. (2004) The
dopaminergic stabiliser ACR16 counteracts the behavioural primitiv-
ization induced by the NMDA receptor antagonist MK-801 in mice:
implications for cognition. Prog. Neuro-Psychopharmacol. Biol.
Psychiatry 28, 677−685.
(25) Natesan, S., Svensson, K. A., Reckless, G. E., Nobrega, J. N.,
Barlow, K. B., Johansson, A. M., and Kapur, S. (2006) The dopamine
stabilizers (S)-(−)-(3-methanesulfonyl-phenyl)-1-propyl-piperidine
[(−)-OSU6162] and 4-(3-methanesulfonylphenyl)-1-propyl-piperi-
dine (ACR16) show high in vivo D2 receptor occupancy,
antipsychotic-like efficacy, and low potential for motor side effects in
the rat. J. Pharmacol. Exp. Ther. 318, 810−818.
(26) Carlsson, A., and Carlsson, M. L. (2006) A dopaminergic deficit
hypothesis of schizophrenia: the path to discovery. Dialogues Clin.
Neurosci 8, 137−142.
(27) Harrison, P. J., and Weinberger, D. R. (2005) Schizophrenia
genes, gene expression, and neuropathology: on the matter of their
convergence. Mol. Psychiatry 10, 40−68 image 45..
(28) Farde, L., Nordstrom, A. L., Wiesel, F. A., Pauli, S., Halldin, C.,
and Sedvall, G. (1992) Positron emission tomographic analysis of
central D1 and D2 dopamine receptor occupancy in patients treated
with classical neuroleptics and clozapine. Relation to extrapyramidal
side effects. Arch. Gen. Psychiatry 49, 538−544.
(29) Seeman, P. (2002) Atypical antipsychotics: mechanism of
action. Can. Psychiatr. Assoc. J. 47, 27−38.
(30) Dyhring, T., Nielsen, E. O., Sonesson, C., Pettersson, F.,
Karlsson, J., Svensson, P., Christophersen, P., and Waters, N. (2010)
The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162
display dopamine D(2) receptor antagonism and fast receptor
dissociation properties. Eur. J. Pharmacol. 628, 19−26.
(31) Sonesson, C., Karlsson, J., and Svensson, P. (2012) Novel
modulators of cortical dopaminergic- and nmda-receptor-mediated
glutamatergic neurotransmission, IRLAB, Patent no. WO 2012
143337.
(32) Sonesson, C., Swanson, L., Pettersson, F., Waters, N., and
Waters, S. (2008) Disubstituted phenylpyrrolidines as modulators of
cortical catecholaminergic neurotransmission, IRLAB, Patent no.
WO2008148801 A2.
(33) Sonesson, C., Swanson, L., and Pettersson, F. (2010) Novel 3-
phenyl-azetidine derivatives useful as modulators of cortical
catecholaminergic neurotransmission, IRLAB, Patent no. WO
2010058017 A1.
(34) Sonesson, C., Swansson, L., and Pettersson, F. (2010) F 3-
phenyl-3-methoxypyrrolidine derivatives as modulators of cortical
catecholaminergic neurotransmission, IRLAB, Patent no. WO 2010
058018 A1.
(35) Weisler, R., and McIntyre, R. S. (2013) The role of extended-
release quetiapine fumarate monotherapy in the treatment of patients
with major depressive disorder. Expert Rev. Neurother. 13, 1161−1182.
(36) Shearman, E., Rossi, S., Szasz, B., Juranyi, Z., Fallon, S., Pomara,
N., Sershen, H., and Lajtha, A. (2006) Changes in cerebral
neurotransmitters and metabolites induced by acute donepezil and
memantine administrations: a microdialysis study. Brain Res. Bull. 69,
204−213.
(37) Langlois, X., Megens, A., Lavreysen, H., Atack, J., Cik, M., te
Riele, P., Peeters, L., Wouters, R., Vermeire, J., Hendrickx, H.,
Macdonald, G., and De Bruyn, M. (2012) Pharmacology of JNJ-
37822681, a specific and fast-dissociating D2 antagonist for the
treatment of schizophrenia. J. Pharmacol. Exp. Ther. 342, 91−105.
(38) Sonesson, C., Lin, C. H., Hansson, L., Waters, N., Svensson, K.,
Carlsson, A., Smith, M. W., and Wikstrom, H. (1994) Substituted (S)-
phenylpiperidines and rigid congeners as preferential dopamine

ACS Chemical Neuroscience Research Article

DOI: 10.1021/acschemneuro.6b00371
ACS Chem. Neurosci. 2017, 8, 785−797

796

http://dx.doi.org/10.1021/acschemneuro.6b00371


autoreceptor antagonists: synthesis and structure-activity relationships.
J. Med. Chem. 37, 2735−2753.
(39) Bramham, C. R., Alme, M. N., Bittins, M., Kuipers, S. D., Nair,
R. R., Pai, B., Panja, D., Schubert, M., Soule, J., Tiron, A., and Wibrand,
K. (2010) The Arc of synaptic memory. Exp. Brain Res. 200, 125−140.
(40) Li, Z., Ichikawa, J., Dai, J., and Meltzer, H. Y. (2004)
Aripiprazole, a novel antipsychotic drug, preferentially increases
dopamine release in the prefrontal cortex and hippocampus in rat
brain. Eur. J. Pharmacol. 493, 75−83.
(41) Mailman, R. B., and Murthy, V. (2010) Third generation
antipsychotic drugs: partial agonism or receptor functional selectivity?
Curr. Pharm. Des. 16, 488−501.
(42) Kapur, S., and Seeman, P. (2000) Antipsychotic agents differ in
how fast they come off the dopamine D2 receptors. Implications for
atypical antipsychotic action. J. Psychiatry Neurosci. 25, 161−166.
(43) Sahlholm, K., Marcellino, D., Nilsson, J., Ogren, S. O., Fuxe, K.,
and Arhem, P. (2014) Typical and atypical antipsychotics do not differ
markedly in their reversibility of antagonism of the dopamine D2
receptor. Int. J. Neuropsychopharmacol. 17, 149−155.
(44) Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Orey, D.,
Richter, F., Samara, M., Barbui, C., Engel, R. R., Geddes, J. R., Kissling,
W., Stapf, M. P., Lassig, B., Salanti, G., and Davis, J. M. (2013)
Comparative efficacy and tolerability of 15 antipsychotic drugs in
schizophrenia: a multiple-treatments meta-analysis. Lancet 382, 951−
962.
(45) Oh, G. H., Yu, J. C., Choi, K. S., Joo, E. J., and Jeong, S. H.
(2015) Simultaneous Comparison of Efficacy and Tolerability of
Second-Generation Antipsychotics in Schizophrenia: Mixed-Treat-
ment Comparison Analysis Based on Head-to-Head Trial Data.
Psychiatry Invest. 12, 46−54.
(46) Meltzer, H. Y., and Massey, B. W. (2011) The role of serotonin
receptors in the action of atypical antipsychotic drugs. Curr. Opin.
Pharmacol. 11, 59−67.
(47) Caroff, S. N., Hurford, I., Lybrand, J., and Campbell, E. C.
(2011) Movement disorders induced by antipsychotic drugs:
implications of the CATIE schizophrenia trial. Neurol Clin 29, 127−
148 viii.
(48) Peluso, M. J., Lewis, S. W., Barnes, T. R., and Jones, P. B. (2012)
Extrapyramidal motor side-effects of first- and second-generation
antipsychotic drugs. Br. J. Psychiatry 200, 387−392.
(49) Rybakowski, J. K., Vansteelandt, K., Remlinger-Molenda, A.,
Fleischhacker, W. W., Kahn, R. S., and Peuskens, J. (2014)
Extrapyramidal symptoms during treatment of first schizophrenia
episode: results from EUFEST. Eur. Neuropsychopharmacol. 24, 1500−
1505.
(50) Bertisch, S. M., Herzig, S. J., Winkelman, J. W., and Buettner, C.
(2014) National use of prescription medications for insomnia:
NHANES 1999−2010. Sleep 37, 343−349.
(51) Lewander, T., Westerbergh, S. E., and Morrison, D. (1990)
Clinical profile of remoxipride–a combined analysis of a comparative
double-blind multicentre trial programme. Acta Psychiatr. Scand. 82,
92−98.
(52) Soares, B. G., Fenton, M., and Chue, P. (2000) Sulpiride for
schizophrenia. Cochrane Database Syst. Rev. , CD001162
DOI: 10.1002/14651858.CD001162.
(53) de Yebenes, J. G., Landwehrmeyer, B., Squitieri, F., Reilmann,
R., Rosser, A., Barker, R. A., Saft, C., Magnet, M. K., Sword, A.,
Rembratt, A., and Tedroff, J. (2011) Pridopidine for the treatment of
motor function in patients with Huntington’s disease (MermaiHD): a
phase 3, randomised, double-blind, placebo-controlled trial. Lancet
Neurol. 10, 1049−1057.
(54) Huntington Study Group HART Investigators (2013) A
randomized, double-blind, placebo-controlled trial of pridopidine in
Huntington’s disease. Mov. Disord. 28, 1407−1415.
(55) Ponten, H., Kullingsjo, J., Sonesson, C., Waters, S., Waters, N.,
and Tedroff, J. (2013) The dopaminergic stabilizer pridopidine
decreases expression of L-DOPA-induced locomotor sensitisation in
the rat unilateral 6-OHDA model. Eur. J. Pharmacol. 698, 278−285.

(56) Rung, J. P., Carlsson, A., Markinhuhta, K. R., and Carlsson, M.
L. (2005) The dopaminergic stabilizers (−)-OSU6162 and ACR16
reverse (+)-MK-801-induced social withdrawal in rats. Prog. Neuro-
Psychopharmacol. Biol. Psychiatry 29, 833−839.
(57) Sahlholm, K., Arhem, P., Fuxe, K., and Marcellino, D. (2013)
The dopamine stabilizers ACR16 and (−)-OSU6162 display nano-
molar affinities at the [sigma]-1 receptor. Mol. Psychiatry 18, 12−14.
(58) Seeman, P., Tokita, K., Matsumoto, M., Matsuo, A., Sasamata,
M., and Miyata, K. (2009) The dopaminergic stabilizer ASP2314/
ACR16 selectively interacts with D2(High) receptors. Synapse
(Hoboken, NJ, U. S.) 63, 930−934.
(59) Waters, S., Ponten, H., Klamer, D., and Waters, N. (2014) Co-
administration of the Dopaminergic Stabilizer Pridopidine and
Tetrabenazine in Rats. J. Huntington's Dis. 3, 285−298.
(60) Garner, J. P. (2014) The significance of meaning: why do over
90% of behavioral neuroscience results fail to translate to humans, and
what can we do to fix it? ILAR J. 55, 438−456.
(61) Westerink, B. H. C., and Justice, J. B., Jr. (1991) Chapter 2 -
Microdialysis compared with other in vivo release models. In
Techniques in the Behavioral and Neural Sciences (Robinson, T. E.,
and Justice, J. B., Eds.), pp 23−43, Elsevier, Amsterdam.
(62) Carlsson, A., Hansson, L. O., Waters, N., and Carlsson, M. L.
(1997) Neurotransmitter aberrations in schizophrenia: new perspec-
tives and therapeutic implications. Life Sci. 61, 75−94.
(63) Sakuma, K., Komatsu, H., Maruyama, M., Imaichi, S., Habata, Y.,
and Mori, M. (2015) Temporal and spatial transcriptional fingerprints
by antipsychotic or propsychotic drugs in mouse brain. PLoS One 10,
e0118510.
(64) Kedracka-Krok, S., Swiderska, B., Jankowska, U., Skupien-
Rabian, B., Solich, J., Buczak, K., and Dziedzicka-Wasylewska, M.
(2015) Clozapine influences cytoskeleton structure and calcium
homeostasis in rat cerebral cortex and has a different proteomic
profile than risperidone. J. Neurochem. 132, 657−676.
(65) Gottfries, J., Melgar, S., and Michaelsson, E. (2012) Modelling
of mouse experimental colitis by global property screens: a holistic
approach to assess drug effects in inflammatory bowel disease. PLoS
One 7, e30005.
(66) Gronier, B., Waters, S., and Ponten, H. (2013) The
dopaminergic stabilizer pridopidine increases neuronal activity of
pyramidal neurons in the prefrontal cortex. J. Neural Transm. 120,
1281−1294.
(67) Eriksson, L. (2006) Multi- and megavariate data analysis. 2.
Advanced applications and method extensions, Umetrics.
(68) Markstein, R., Gull, P., Rudeberg, C., Urwyler, S., Jaton, A. L.,
McAllister, K., Dixon, A. K., and Hoyer, D. (1996) SDZ PSD 958, a
novel D1 receptor antagonist with potential limbic selectivity. J. Neural
Transm. 103, 261−276.
(69) Michl, J., Scharinger, C., Zauner, M., Kasper, S., Freissmuth, M.,
Sitte, H. H., Ecker, G. F., and Pezawas, L. (2014) A multivariate
approach linking reported side effects of clinical antidepressant and
antipsychotic trials to in vitro binding affinities. Eur. Neuro-
psychopharmacol. 24, 1463−1474.

ACS Chemical Neuroscience Research Article

DOI: 10.1021/acschemneuro.6b00371
ACS Chem. Neurosci. 2017, 8, 785−797

797

http://dx.doi.org/10.1002/14651858.CD001162
http://dx.doi.org/10.1021/acschemneuro.6b00371

